Seqirus today announced plans to accelerate the development of its next generation of messenger RNA (mRNA) vaccine technology
- Appoints Roberta Duncan as new program lead to drive technology advancement
|
[19-August-2021] |
SUMMIT, N.J., Aug. 19, 2021 /PRNewswire/ -- Seqirus, a global leader in influenza prevention and a business of CSL Limited (ASX:CSL), today announced plans to accelerate the development of its next generation of messenger RNA (mRNA) vaccine technology, self-amplifying messenger RNA (sa-mRNA), with the creation of a dedicated sa-mRNA program and senior leadership appointment. Seqirus is currently developing a number of sa-mRNA-based influenza vaccine candidates, with pre-clinical results demonstrating promise as compared to more traditional influenza vaccine technologies. The company is targeting the commencement of clinical trials for both seasonal and pandemic influenza vaccine candidates in the second half of 2022. “While the COVID-19 pandemic has brought mRNA vaccines to prominence, Seqirus has been researching sa-mRNA as a viable influenza vaccine technology for a number of years and is now forging ahead into clinical trials to ensure we build the best possible technology platform for both seasonal influenza and pandemic response, more broadly,” said Stephen Marlow, General Manager at Seqirus. “As part of Seqirus’ investment in this next-generation sa-mRNA technology, I’m proud to announce the appointment of Roberta Duncan in the newly-created role of Vice President, mRNA Program Lead, who will execute a cross-functional effort across the Seqirus enterprise to drive this exciting advancement on our differentiated influenza portfolio from development through to commercialization.” mRNA vaccines help protect against infectious diseases by giving instructions to cells in the body to make a protein, stimulating the immune response and leaving a blueprint to recognize and fight future infection.1 Self-amplifying mRNA, the next generation version of today’s mRNA technology, also instructs the body to replicate mRNA, amplifying the amount of protein made.2 This could enable vaccine manufacturers to potentially develop more effective vaccines with a smaller dosage and with lower rates of reactogenicity, underscoring the application in both pandemic and seasonal settings.2 In preclinical research, sa-mRNA technology demonstrated the potential to raise stronger cellular responses and generate significantly higher antibody titers at the same dose level as mRNA.2 Based on its longstanding heritage in influenza, Seqirus is well positioned to make strategic investments in both the development of its existing platforms and in longer-term, high opportunity development activities. While its current focus remains on influenza, Seqirus is also exploring the potential for sa-mRNA vaccines in other disease areas. Seqirus sees this technology as an important element in its R&D pipeline, in addition to its adjuvanted, cell-based influenza vaccine (aQIVc) candidate, a highly flexible platform for rapid pandemic response, regardless of influenza virus strain, which is currently in Phase 2 clinical trials.3,4,5 “As the industry leader in influenza vaccines, we recognize the important role that we must play to develop this platform, today and for years to come,” said Roberta Duncan, Vice President, mRNA Program Lead. “It’s an exciting time for the industry and for Seqirus, as we continue actively pursuing technological advances to improve influenza protection and help safeguard our communities around the world against this potentially serious virus.” Seqirus produces influenza vaccines across its global manufacturing network, which includes facilities in the U.S., U.K. and Australia. Seqirus is currently considering a number of global locations to establish scaled manufacturing capabilities for its sa-mRNA platform technology. Seqirus continually works on improving the effectiveness of its seasonal and pandemic influenza vaccines through investment in optimization of current technologies and developing new, transformative approaches to future vaccine development. Seqirus remains committed to collaborating with other partners to advance its understanding of how the human immune system responds to influenza, and the implications for development of next generation vaccines that better protect against influenza. Roberta Duncan Roberta has nearly 25 years of global experience in the pharmaceutical sector in program management, clinical development, asset strategy, business operations and team leadership. She earned her BA in Biochemistry from New York University and a dual MBA in International Management from Krannert School of Management (Purdue University) and TiasNimbas Business School (Tilburg University, The Netherlands). About Seasonal Influenza About Pandemic Influenza About Seqirus About CSL For more information visit www.seqirus.com and www.csl.com. Intended Audience Forward-Looking Statements USA-CRP-21-0046 MEDIA CONTACT REFERENCES 1 CDC. (2021). Understanding mRNA COVID-19 Vaccines. Retrieved from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html. Accessed August 2021. 2 Vigel, B., Lambert, L., Kinnear, E., et al. (2018). Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. American Society of Gene & Cell Therapy. 3 CDC. (2020). Cell-Based Flu Vaccines. Retrieved from: https://www.cdc.gov/flu/prevent/cell-based.htm. Accessed August 2021. 4 Camilloni B, Neri M, Lepri E, Iorio AM. Cross-reactive antibodies in middle-aged and elderly volunteers after MF59-adjuvanted subunit trivalent influenza vaccine against B viruses of the B/Victoria or B/Yamagata lineages. Vaccine. Jun 2009;27(31):4099-103. doi:10.1016/j.vaccine.2009.04.078. 5 Kavian N, Hachim A, Li AP, et al. Assessment of enhanced influenza vaccination finds that FluAd conveys an advantage in mice and older adults. Clin Transl Immunology. 2020;9(2):e1107. doi:10.1002/cti2.1107. 6 CDC. (2019). Key Facts about Influenza (Flu). Retrieved from: https://www.cdc.gov/flu/about/keyfacts.htm. Accessed August 2021. 7 CDC. (2021). WG Considerations and Proposed Influenza Vaccine Recommendations, 2021-22 . Retrieved from: https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/03-influenza-grohskopf-508.pdf. Accessed August 2021. 8 CDC. (2021). Estimated Influenza Illnesses, Medical visits, Hospitalizations, and Deaths in the United States — 2019–2020 Influenza Season. Retrieved from: https://www.cdc.gov/flu/about/burden/2019-2020.html. Accessed August 2021. 9 CDC. (2021). Who Needs a Flu Vaccine and When. Retrieved from: https://www.cdc.gov/flu/prevent/vaccinations.htm. Accessed August 2021. 10 CDC. (2016). Pandemic Basics. Retrieved from: https://www.cdc.gov/flu/pandemic-resources/basics/index.html. Accessed August 2021. 11 WHO. (2021). How pandemic influenza emerges. Retrieved from: https://www.euro.who.int/en/health-topics/communicable-diseases/influenza/pandemic-influenza/how-pandemic-influenza-emerges. Accessed August 2021. 12 WHO. (2017). Pandemic Influenza Risk Management: A WHO guide to inform and harmonize national and international pandemic preparedness and response. Retrieved from: https://apps.who.int/iris/bitstream/handle/10665/259893/WHO-WHE-IHM-GIP-2017.1-eng.pdf;jsessionid=4421F16879D2F8B96481F8D0C745C7F3?sequence=1. Accessed August 2021. 13 (WHO). (2012). Influenza: H5N1. Retrieved from: https://www.who.int/news-room/q-a-detail/influenza-h5n1. Accessed August 2021. View original content:https://www.prnewswire.com/news-releases/seqirus-announces-investment-in-next-generation-influenza-vaccine-technology-self-amplifying-messenger-rna-sa-mrna-301358873.html SOURCE Seqirus | ||
Company Codes: Australia:CSL, OTC-PINK:CSLLY |