AstraZeneca and Merck & Co., Inc., known as MSD outside the US and Canada, today announced results from the OlympiA Phase III trial showed LYNPARZA®
LYNPARZA® (olaparib) reduced the risk of cancer recurrence by 42% in the adjuvant treatment of patients with germline BRCA-mutated high-risk early breast cancer in OlympiA Phase III trial
First medicine targeting BRCA mutations to show clinical benefit in adjuvant setting
WILMINGTON, Del.--(BUSINESS WIRE)-- AstraZeneca and Merck & Co., Inc., known as MSD outside the US and Canada, today announced results from the OlympiA Phase III trial showed LYNPARZA® (olaparib) demonstrated a statistically significant and clinically meaningful improvement in invasive disease-free survival (iDFS) versus placebo in the adjuvant treatment of patients with germline BRCA-mutated (gBRCAm) high-risk human epidermal growth factor receptor 2 (HER2)-negative early breast cancer.
The results will be presented during the plenary session of the 2021 American Society of Clinical Oncology (ASCO) Annual Meeting on June 6, 2021 (abstract LBA#1) and were published today in The New England Journal of Medicine.
An estimated 2.3 million people were diagnosed with breast cancer worldwide in 2020 and BRCA mutations are found in approximately 5% of breast cancer patients.1,2
Sue Friedman, Executive Director, Facing Our Risk of Cancer Empowered (FORCE) and member of the OlympiA trial steering committee, said: “While there have been great strides in the early treatment of breast cancer, the fear of cancer returning is still at the forefront of patients’ minds. New targeted treatment approaches are needed in the adjuvant setting that can help keep cancer and that fear at bay.”
Andrew Tutt, chair of the OlympiA trial steering committee and professor of Oncology at The Institute of Cancer Research, London and Kings College London, said: “We are thrilled that our global academic and industry partnership in OlympiA has been able to help identify a possible new treatment option for patients with early-stage breast cancer and who have inherited mutations in their BRCA1 or BRCA2 genes. Patients with early-stage breast cancer who have inherited BRCA mutations are typically diagnosed at a younger age compared to those without such a mutation. Olaparib has the potential to be used as a follow-on to all the standard initial breast cancer treatments to reduce the rate of life-threatening recurrence and cancer spread for many patients identified through genetic testing to have mutations in these genes.”
Dave Fredrickson, Executive Vice President, Oncology Business Unit, said: “This is the first time that any medicine targeting a BRCA mutation has demonstrated the potential to change the course of early-stage breast cancer and offer hope for a cure. By providing a treatment which significantly reduces the risk of breast cancer returning in these high-risk patients, we hope LYNPARZA will set a new benchmark demonstrating sustained clinical benefit. We are working with regulatory authorities to bring LYNPARZA to these patients as quickly as possible.”
Roy Baynes, Senior Vice President and Head of Global Clinical Development, Chief Medical Officer, Merck, said: “Results of the OlympiA trial represent a potential step forward for patients with high-risk early breast cancer. These new data support the importance of testing at diagnosis for BRCA1/2 mutations, which are actionable biomarkers that can help identify patients with early breast cancer who may be eligible for adjuvant treatment with LYNPARZA. Testing for BRCA mutations in addition to hormone receptor status and the expression of the HER2 protein will allow clinicians to better inform potential treatment plans for their patients.”
In the overall trial population of patients who had completed local treatment and standard neoadjuvant or adjuvant chemotherapy, results showed LYNPARZA reduced the risk of invasive breast cancer recurrences, second cancers or death by 42% (based on a hazard ratio [HR] of 0.58; 99.5% confidence interval [CI] 0.41-0.82; p<0.0001). At three years, 85.9% of patients treated with LYNPARZA remained alive and free of invasive breast cancer and second cancers versus 77.1% on placebo.
LYNPARZA also demonstrated a statistically significant and clinically meaningful improvement in the key secondary endpoint of distant disease-free survival (DDFS) in the overall trial population. LYNPARZA reduced the risk of distant disease recurrence or death by 43% (based on an HR of 0.57; 99.5% CI 0.39-0.83; p<0.0001). At the time of this initial data cut-off, fewer deaths had occurred in patients receiving LYNPARZA, but the difference in overall survival (OS) did not reach statistical significance. The trial will continue to assess OS as a secondary endpoint.
In February 2021, the Independent Data Monitoring Committee recommended for the OlympiA trial to move to early primary analysis and reporting. Based on the planned interim analysis, the IDMC concluded that the trial crossed the superiority boundary for its primary endpoint of iDFS and demonstrated a sustainable and clinically relevant treatment effect for LYNPARZA versus placebo.
Summary of OlympiA results
| LYNPARZA (n=921) | Placebo (n=915) |
iDFS (primary endpoint) |
| |
HR (99.5% CI) | 0.58 (0.41, 0.82) | |
p-value | p<0.0001 | |
iDFS rates |
| |
One year | 93.3% | 88.4% |
Two years | 89.2% | 81.5% |
Three years | 85.9% | 77.1% |
| ||
DDFS (secondary endpoint) | ||
HR (99.5% CI) | 0.57 (0.39, 0.83) | |
p-value | p<0.0001 | |
DDFS rates |
| |
One year | 94.3% | 90.2% |
Two years | 90.0% | 83.9% |
Three years | 87.5% | 80.4% |
| ||
OS at interim (secondary endpoint)ii | ||
HR (99% CI) | 0.68 (0.44, 1.05) | |
p-value | p=0.024 | |
OS rates |
| |
One year | 98.1% | 96.9% |
Two years | 94.8% | 92.3% |
Three years | 92.0% | 88.3% |
i The data cut-off date for the interim analysis was March 27, 2020.
ii Statistical significance not reached based on the interim analysis plan for alpha conservation for future survival analyses.
The safety and tolerability profile of LYNPARZA in this trial was in line with that observed in prior clinical trials. The most common adverse events (AEs) were nausea (57%), fatigue (40%), anemia (24%) and vomiting (22%). Grade 3 or higher AEs were anemia (9%), neutropenia (5%), leukopenia (3%), fatigue (2%), and nausea (1%). Approximately 10% of patients treated with LYNPARZA discontinued treatment early due to AEs.
OlympiA is a global collaborative Phase III trial coordinated by the Breast International Group (BIG) worldwide, in partnership with NRG Oncology, the US National Cancer Institute (NCI), Frontier Science & Technology Research Foundation (FSTRF), AstraZeneca and Merck.3 The trial is sponsored by NRG Oncology in the US and by AstraZeneca outside the US.
In the US, LYNPARZA is approved for the treatment of adult patients with deleterious or suspected deleterious gBRCAm, HER2-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA. LYNPARZA is not currently approved for the adjuvant treatment of gBRCAm high-risk HER2-negative early breast cancer.
IMPORTANT SAFETY INFORMATION
CONTRAINDICATIONS
There are no contraindications for LYNPARZA.
WARNINGS AND PRECAUTIONS
Myelodysplastic Syndrome/Acute Myeloid Leukemia (MDS/AML): Occurred in approximately 1.5% of patients exposed to LYNPARZA monotherapy, and the majority of events had a fatal outcome. The median duration of therapy in patients who developed MDS/AML was 2 years (range: <6 months to >10 years). All of these patients had previous chemotherapy with platinum agents and/or other DNA-damaging agents, including radiotherapy.
Do not start LYNPARZA until patients have recovered from hematological toxicity caused by previous chemotherapy (≤Grade 1). Monitor complete blood count for cytopenia at baseline and monthly thereafter for clinically significant changes during treatment. For prolonged hematological toxicities, interrupt LYNPARZA and monitor blood count weekly until recovery.
If the levels have not recovered to Grade 1 or less after 4 weeks, refer the patient to a hematologist for further investigations, including bone marrow analysis and blood sample for cytogenetics. Discontinue LYNPARZA if MDS/AML is confirmed.
Pneumonitis: Occurred in 0.8% of patients exposed to LYNPARZA monotherapy, and some cases were fatal. If patients present with new or worsening respiratory symptoms such as dyspnea, cough, and fever, or a radiological abnormality occurs, interrupt LYNPARZA treatment and initiate prompt investigation. Discontinue LYNPARZA if pneumonitis is confirmed and treat patient appropriately.
Embryo-Fetal Toxicity: Based on its mechanism of action and findings in animals, LYNPARZA can cause fetal harm. A pregnancy test is recommended for females of reproductive potential prior to initiating treatment.
Females
Advise females of reproductive potential of the potential risk to a fetus and to use effective contraception during treatment and for 6 months following the last dose.
Males
Advise male patients with female partners of reproductive potential or who are pregnant to use effective contraception during treatment and for 3 months following the last dose of LYNPARZA and to not donate sperm during this time.
Venous Thromboembolic Events: Including pulmonary embolism, occurred in 7% of patients with metastatic castration-resistant prostate cancer who received LYNPARZA plus androgen deprivation therapy (ADT) compared to 3.1% of patients receiving enzalutamide or abiraterone plus ADT in the PROfound study. Patients receiving LYNPARZA and ADT had a 6% incidence of pulmonary embolism compared to 0.8% of patients treated with ADT plus either enzalutamide or abiraterone. Monitor patients for signs and symptoms of venous thrombosis and pulmonary embolism, and treat as medically appropriate, which may include long-term anticoagulation as clinically indicated.
ADVERSE REACTIONS—First-Line Maintenance BRCAm Advanced Ovarian Cancer
Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: nausea (77%), fatigue (67%), abdominal pain (45%), vomiting (40%), anemia (38%), diarrhea (37%), constipation (28%), upper respiratory tract infection/influenza/nasopharyngitis/bronchitis (28%), dysgeusia (26%), decreased appetite (20%), dizziness (20%), neutropenia (17%), dyspepsia (17%), dyspnea (15%), leukopenia (13%), UTI (13%), thrombocytopenia (11%), and stomatitis (11%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for SOLO-1 were: decrease in hemoglobin (87%), increase in mean corpuscular volume (87%), decrease in leukocytes (70%), decrease in lymphocytes (67%), decrease in absolute neutrophil count (51%), decrease in platelets (35%), and increase in serum creatinine (34%).
ADVERSE REACTIONS—First-Line Maintenance Advanced Ovarian Cancer in Combination with Bevacizumab
Most common adverse reactions (Grades 1-4) in ≥10% of patients treated with LYNPARZA/bevacizumab compared to a ≥5% frequency for placebo/bevacizumab in the first-line maintenance setting for PAOLA-1 were: nausea (53%), fatigue (including asthenia) (53%), anemia (41%), lymphopenia (24%), vomiting (22%) and leukopenia (18%). In addition, the most common adverse reactions (≥10%) for patients receiving LYNPARZA/bevacizumab irrespective of the frequency compared with the placebo/bevacizumab arm were: diarrhea (18%), neutropenia (18%), urinary tract infection (15%) and headache (14%).
In addition, venous thromboembolic events occurred more commonly in patients receiving LYNPARZA/bevacizumab (5%) than in those receiving placebo/bevacizumab (1.9%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients for LYNPARZA in combination with bevacizumab in the first-line maintenance setting for PAOLA-1 were: decrease in hemoglobin (79%), decrease in lymphocytes (63%), increase in serum creatinine (61%), decrease in leukocytes (59%), decrease in absolute neutrophil count (35%) and decrease in platelets (35%).
ADVERSE REACTIONS—Maintenance Recurrent Ovarian Cancer
Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA in the maintenance setting for SOLO-2 were: nausea (76%), fatigue (including asthenia) (66%), anemia (44%), vomiting (37%), nasopharyngitis/upper respiratory tract infection (URI)/influenza (36%), diarrhea (33%), arthralgia/myalgia (30%), dysgeusia (27%), headache (26%), decreased appetite (22%), and stomatitis (20%).
Study 19: nausea (71%), fatigue (including asthenia) (63%), vomiting (35%), diarrhea (28%), anemia (23%), respiratory tract infection (22%), constipation (22%), headache (21%), decreased appetite (21%) and dyspepsia (20%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the maintenance setting (SOLO-2/Study 19) were: increase in mean corpuscular volume (89%/82%), decrease in hemoglobin (83%/82%), decrease in leukocytes (69%/58%), decrease in lymphocytes (67%/52%), decrease in absolute neutrophil count (51%/47%), increase in serum creatinine (44%/45%), and decrease in platelets (42%/36%).
ADVERSE REACTIONS—Advanced gBRCAm Ovarian Cancer
Most common adverse reactions (Grades 1-4) in ≥20% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer after 3 or more lines of chemotherapy (pooled from 6 studies) were: fatigue/asthenia (66%), nausea (64%), vomiting (43%), anemia (34%), diarrhea (31%), nasopharyngitis/upper respiratory tract infection (URI) (26%), dyspepsia (25%), myalgia (22%), decreased appetite (22%), and arthralgia/musculoskeletal pain (21%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for advanced gBRCAm ovarian cancer (pooled from 6 studies) were: decrease in hemoglobin (90%), mean corpuscular volume elevation (57%), decrease in lymphocytes (56%), increase in serum creatinine (30%), decrease in platelets (30%), and decrease in absolute neutrophil count (25%).
ADVERSE REACTIONS—gBRCAm, HER2-Negative Metastatic Breast Cancer
Most common adverse reactions (Grades 1-4) in ≥20% of patients in OlympiAD were: nausea (58%), anemia (40%), fatigue (including asthenia) (37%), vomiting (30%), neutropenia (27%), respiratory tract infection (27%), leukopenia (25%), diarrhea (21%), and headache (20%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in OlympiAD were: decrease in hemoglobin (82%), decrease in lymphocytes (73%), decrease in leukocytes (71%), increase in mean corpuscular volume (71%), decrease in absolute neutrophil count (46%), and decrease in platelets (33%).
ADVERSE REACTIONS—First-Line Maintenance gBRCAm Metastatic Pancreatic Adenocarcinoma
Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: fatigue (60%), nausea (45%), abdominal pain (34%), diarrhea (29%), anemia (27%), decreased appetite (25%), constipation (23%), vomiting (20%), back pain (19%), arthralgia (15%), rash (15%), thrombocytopenia (14%), dyspnea (13%), neutropenia (12%), nasopharyngitis (12%), dysgeusia (11%), and stomatitis (10%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA in the first-line maintenance setting for POLO were: increase in serum creatinine (99%), decrease in hemoglobin (86%), increase in mean corpuscular volume (71%), decrease in lymphocytes (61%), decrease in platelets (56%), decrease in leukocytes (50%), and decrease in absolute neutrophil count (25%).
ADVERSE REACTIONS—HRR Gene-mutated Metastatic Castration-Resistant Prostate Cancer
Most common adverse reactions (Grades 1-4) in ≥10% of patients in clinical trials of LYNPARZA for PROfound were: anemia (46%), fatigue (including asthenia) (41%), nausea (41%), decreased appetite (30%), diarrhea (21%), vomiting (18%), thrombocytopenia (12%), cough (11%), and dyspnea (10%).
Most common laboratory abnormalities (Grades 1-4) in ≥25% of patients in clinical trials of LYNPARZA for PROfound were: decrease in hemoglobin (98%), decrease in lymphocytes (62%), decrease in leukocytes (53%), and decrease in absolute neutrophil count (34%).
DRUG INTERACTIONS
Anticancer Agents: Clinical studies of LYNPARZA with other myelosuppressive anticancer agents, including DNA-damaging agents, indicate a potentiation and prolongation of myelosuppressive toxicity.
CYP3A Inhibitors: Avoid coadministration of strong or moderate CYP3A inhibitors when using LYNPARZA. If a strong or moderate CYP3A inhibitor must be coadministered, reduce the dose of LYNPARZA. Advise patients to avoid grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during LYNPARZA treatment.
CYP3A Inducers: Avoid coadministration of strong or moderate CYP3A inducers when using LYNPARZA.
USE IN SPECIFIC POPULATIONS
Lactation: No data are available regarding the presence of olaparib in human milk, its effects on the breastfed infant or on milk production. Because of the potential for serious adverse reactions in the breastfed infant, advise a lactating woman not to breastfeed during treatment with LYNPARZA and for 1 month after receiving the final dose.
Pediatric Use: The safety and efficacy of LYNPARZA have not been established in pediatric patients.
Hepatic Impairment: No adjustment to the starting dose is required in patients with mild or moderate hepatic impairment (Child-Pugh classification A and B). There are no data in patients with severe hepatic impairment (Child-Pugh classification C).
Renal Impairment: No dosage modification is recommended in patients with mild renal impairment (CLcr 51-80 mL/min estimated by Cockcroft-Gault). In patients with moderate renal impairment (CLcr 31-50 mL/min), reduce the dose of LYNPARZA to 200 mg twice daily. There are no data in patients with severe renal impairment or end-stage renal disease (CLcr ≤30 mL/min).
INDICATIONS
LYNPARZA is a poly (ADP-ribose) polymerase (PARP) inhibitor indicated:
First-Line Maintenance BRCAm Advanced Ovarian Cancer
For the maintenance treatment of adult patients with deleterious or suspected deleterious germline or somatic BRCA-mutated (gBRCAm or sBRCAm) advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.
First-Line Maintenance HRD-Positive Advanced Ovarian Cancer in Combination with Bevacizumab
In combination with bevacizumab for the maintenance treatment of adult patients with advanced epithelial ovarian, fallopian tube or primary peritoneal cancer who are in complete or partial response to first-line platinum-based chemotherapy and whose cancer is associated with homologous recombination deficiency (HRD) positive status defined by either:
- a deleterious or suspected deleterious BRCA mutation, and/or
- genomic instability
Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.
Maintenance Recurrent Ovarian Cancer
For the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer, who are in complete or partial response to platinum-based chemotherapy.
Advanced gBRCAm Ovarian Cancer
For the treatment of adult patients with deleterious or suspected deleterious germline BRCA-mutated (gBRCAm) advanced ovarian cancer who have been treated with 3 or more prior lines of chemotherapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.
gBRCAm, HER2-Negative Metastatic Breast Cancer
For the treatment of adult patients with deleterious or suspected deleterious gBRCAm, human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer who have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting. Patients with hormone receptor (HR)-positive breast cancer should have been treated with a prior endocrine therapy or be considered inappropriate for endocrine therapy. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.
First-Line Maintenance gBRCAm Metastatic Pancreatic Cancer
For the maintenance treatment of adult patients with deleterious or suspected deleterious gBRCAm metastatic pancreatic adenocarcinoma whose disease has not progressed on at least 16 weeks of a first-line platinum-based chemotherapy regimen. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.
HRR Gene-mutated Metastatic Castration-Resistant Prostate Cancer
For the treatment of adult patients with deleterious or suspected deleterious germline or somatic homologous recombination repair (HRR) gene-mutated metastatic castration-resistant prostate cancer (mCRPC) who have progressed following prior treatment with enzalutamide or abiraterone. Select patients for therapy based on an FDA-approved companion diagnostic for LYNPARZA.
Please click here for complete Prescribing Information, including Patient Information (Medication Guide).
Early breast cancer
Breast cancer is the most common cancer among women worldwide and an estimated 70% of all breast cancer is diagnosed at an early stage.4,5 Breast cancer is one of the most biologically diverse tumor types with various factors underlying its development and progression.6 The discovery of biomarkers in the development of breast cancer has greatly impacted scientific understanding of the disease and treatment of patients who develop the disease.7
OlympiA
OlympiA is a Phase III, double-blind, placebo-controlled, multicenter trial testing the efficacy and safety of LYNPARZA tablets versus placebo as adjuvant treatment in patients with gBRCAm, high-risk, HER2-negative early breast cancer, who have completed definitive local treatment and neoadjuvant or adjuvant chemotherapy. The primary endpoint of the trial is iDFS defined as time from randomization to date of first loco-regional or distant recurrence, new cancer or death from any cause. Key secondary endpoints include OS and DDFS, which is defined as time from randomization until documented evidence of first distant recurrence of breast cancer or death without distant recurrence.3
BIG
The Breast International Group (BIG) is an international not-for-profit organization for academic breast cancer research groups from around the world, based in Brussels, Belgium.
Founded by leading European opinion leaders in 1999, the organization aims to address fragmentation in breast cancer research and now represents a network of over 50 like-minded research groups affiliated with specialized hospitals, research centers and leading experts across approximately 70 countries on six continents.
BIG’s research is supported in part by its philanthropy unit, known as BIG against breast cancer, which is used to interact with the general public and donors, and to raise funds for BIG’s purely academic breast cancer trials and research programs.
FSTRF
Frontier Science & Technology Research Foundation (FSTRF) is a non-profit, research organization which supports research networks, pharmaceutical companies and investigators to conduct scientifically meaningful high-quality clinical trials. The OlympiA trial involved research staff in the US and in the Affiliate office in Scotland.
FSTRF works with scientists and technicians in more than 800 laboratories, universities and medical centers around the world to provide a comprehensive range of research services throughout the clinical trial process including design, analysis and reporting.
Through its work, FSTRF aims to advance the application of statistical science and practice and data management techniques in science, healthcare and education.
NRG Oncology
NRG Oncology is a network group funded by the US National Cancer Institute (NCI), a part of the National Institutes of Health. NRG Oncology brings together the National Surgical Adjuvant Breast and Bowel Project (NSABP), the Radiation Therapy Oncology Group (RTOG), and the Gynecologic Oncology Group (GOG), with the mission to improve the lives of cancer patients by conducting practice-changing multi-institutional clinical and translational research. NRG Oncology sponsored OlympiA in the US and collaborated with the other adult cancer clinical trials research groups funded by the NCI, Alliance, ECOG/ACRIN and the Southwest Oncology Group. The NCI and AstraZeneca are collaborating under a Cooperative Research and Development Agreement between the parties.
BRCA1 and BRCA2
BRCA1 and BRCA2 are human genes that produce proteins responsible for repairing damaged DNA and play an important role maintaining the genetic stability of cells. When either of these genes is mutated or altered such that its protein product either is not made or does not function correctly, DNA damage may not be repaired properly, and cells become unstable. As a result, cells are more likely to develop additional genetic alterations that can lead to cancer and confer sensitivity to PARP inhibitors including LYNPARZA.8-11
LYNPARZA
LYNPARZA (olaparib) is a first-in-class PARP inhibitor and the first targeted treatment to block DNA damage response (DDR) in cells/tumors harboring a deficiency in homologous recombination repair (HRR), such as mutations in BRCA1 and/or BRCA2. Inhibition of PARP with LYNPARZA leads to the trapping of PARP bound to DNA single-strand breaks, stalling of replication forks, their collapse and the generation of DNA double-strand breaks and cancer cell death. LYNPARZA is being tested in a range of PARP-dependent tumor types with defects and dependencies in the DDR pathway.
LYNPARZA, which is being jointly developed and commercialized by AstraZeneca and Merck, has been used to treat over 40,000 patients worldwide. LYNPARZA has the broadest and most advanced clinical trial development program of any PARP inhibitor, and AstraZeneca and Merck are working together to understand how it may affect multiple PARP-dependent tumors as a monotherapy and in combination across multiple cancer types. LYNPARZA is the foundation of AstraZeneca’s industry-leading portfolio of potential new medicines targeting DDR mechanisms in cancer cells.
The AstraZeneca and Merck strategic oncology collaboration
In July 2017, AstraZeneca and Merck & Co., Inc., Kenilworth, NJ, US, known as MSD outside the US and Canada, announced a global strategic oncology collaboration to co-develop and co-commercialize LYNPARZA, the world’s first PARP inhibitor, and selumetinib, a mitogen-activated protein kinase (MEK) inhibitor, for multiple cancer types. Working together, the companies will develop LYNPARZA and selumetinib in combination with other potential new medicines and as monotherapies. Independently, the companies will develop LYNPARZA and selumetinib in combination with their respective PD-L1 and PD-1 medicines.
AstraZeneca in breast cancer
Driven by a growing understanding of breast cancer biology, AstraZeneca is starting to challenge, and redefine, the current clinical paradigm for how breast cancer is classified and treated to deliver even more effective treatments to patients in need – with the bold ambition to one day eliminate breast cancer as a cause of death.
AstraZeneca has a comprehensive portfolio of approved and promising compounds in development that leverage different mechanisms of action to address the biologically diverse breast cancer tumor environment. AstraZeneca aims to continue to transform outcomes for HR-positive breast cancer with foundational medicines fulvestrant and goserelin and the next-generation SERD and potential new medicine camizestrant. PARP inhibitor, LYNPARZA (olaparib) is a targeted treatment option for patients with germline BRCA-mutated HER2-negative metastatic breast cancer. AstraZeneca with Merck continue to research LYNPARZA in metastatic breast cancer patients with an inherited BRCA mutation and are exploring new opportunities to treat these patients earlier in their disease state.
Building on the first approval of fam-trastuzumab deruxtecan-nxki, a HER2-directed antibody-drug conjugate (ADC), in previously treated HER2-positive metastatic breast cancer, AstraZeneca and Daiichi Sankyo are exploring its potential in earlier lines of treatment and in new breast cancer settings. To bring much needed treatment options to patients with triple-negative breast cancer, an aggressive form of breast cancer, AstraZeneca is testing immunotherapy durvalumab in combination with other oncology medicines, including LYNPARZA and fam-trastuzumab deruxtecan-nxki, assessing the potential of AKT kinase inhibitor, capivasertib, in combination with chemotherapy, and collaborating with Daiichi Sankyo to explore the potential of TROP2-directed ADC, datopotamab deruxtecan.
AstraZeneca in oncology
AstraZeneca is leading a revolution in oncology with the ambition to provide cures for cancer in every form, following the science to understand cancer and all its complexities to discover, develop and deliver life-changing medicines to patients.
The Company’s focus is on some of the most challenging cancers. It is through persistent innovation that AstraZeneca has built one of the most diverse portfolios and pipelines in the industry, with the potential to catalyze changes in the practice of medicine and transform the patient experience.
AstraZeneca has the vision to redefine cancer care and, one day, eliminate cancer as a cause of death.
AstraZeneca
AstraZeneca is a global, science-led biopharmaceutical company that focuses on the discovery, development and commercialization of prescription medicines, primarily for the treatment of diseases in three therapy areas – Oncology, Cardiovascular, Renal & Metabolism, and Respiratory & Immunology. AstraZeneca operates in over 100 countries and its innovative medicines are used by millions of patients worldwide. Please visit astrazeneca-us.com and follow the Company on Twitter @AstraZenecaUS.
References
1. World Health Organization. Estimated number of cases in 2020, worldwide, both sexes, all ages. Available at: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf. Accessed May 2021.
2. Mitri Z, et al. The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemother Res Pract. 2012;743193.
3. ClinicalTrials.gov. Olaparib as Adjuvant Treatment in Patients with Germline BRCA-mutated High Risk HER2 Negative Primary Breast Cancer (OlympiA). Available at clinicaltrials.gov/ct2/show/NCT02032823. Accessed May 2021.
4. Breast Cancer School. Will I survive breast cancer? Available at: https://www.breastcancercourse.org/will-i-survive-breast-cancer/. Accessed May 2021.
5. Bertozzi S, et al. Biomarkers in Breast Cancer. Intechopen. 2018.
6. Yersal O, and Barutca S. Biological Subtypes of Breast Cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014;5(3):412-424.
7. Rivenbark A, et al. Molecular and Cellular Heterogeneity in Breast Cancer: Challenges for Personalized Medicine. Am J Pathol. 2013;183(4):1113-1124.
8. Roy R, et al. BRCA1 and BRCA2: Different Roles in a Common Pathway of Genome Protection. Nat Rev Cancer. 2021;12(1):68–78.
9. Wu J, et al. The Role of BRCA1 in DNA Damage Response. Protein Cell. 2010;1(2):117-11.
10. Gorodetska I, et al. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer. 2019;10(9):2109-2127.
11. Li H, et al. PARP Inhibitor Resistance: The Underlying Mechanisms and Clinical Implications. Mol Cancer. 2020;19:107.
US-52973 | 6/21
View source version on businesswire.com: https://www.businesswire.com/news/home/20210603006039/en/
Contacts
Media Inquiries
Holly Campbell +1 302 885 2677
Brendan McEvoy +1 302 885 2677
Source: AstraZeneca